Formulation for scalable optimization of
microcavities via the frequency-averaged
local density of states

Xiangdong Liang and Steven G. Johnson

Department of Mathematics, Massachusetts Institute dfikdogy, Cambridge, MA 02139,
USA

xdliang@math.mit.edu

Abstract: We present a technique for large-scale optimization ofcapti
microcavities based on the frequency-averaged local temdi states
(LDOS), which circumvents computational dif culties paséy previous
eigenproblem-based formulations and allows us to perfarintdépology
optimization of three-dimensional (3d) leaky cavity mod@¢e present
theoreticalresults for both 2d and fully 3d computations in whietery
pixel of the design pattern is a degree of freedom (“topology ogation”),
e.g. for lithographic patterning of dielectric slabs in 8dbre importantly,
we argue that such optimization techniques can be applied to design
cavities for which (unlike silicon-slab single-mode c&4) hand designs
are dif cult or unavailable, and in particular we design nial-volume
multi-modecavities (e.g. for nonlinear frequency-conversion aans).

© 2013 Optical Society of America

OCIS codes:(120.4570) Optical design of instruments; (140.3945) blawvities; (230.5750)
Resonators.

References and links

1.

10.
11.

12.
13.

14.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-€3idn of semiconductor-based ultrasmall pho-
tonic crystal nanocavity,” Opt. Expre&s, 8144—-8150 (2010).

. B. Bourdin, “Filters in topology optimization,” Int. J.Wner. Methods Engb0, 2143-2158 (2001).
. M. P. Bendsoe and O. Sigmurithpology Optimization: Theory, Methods and Applicatic®sd ed. (Springer,

2003).

. M. Y. Wang, X. Wang, and D. Guo, “A level set method for stanal topology optimization,” Comput. Methods

Appl. Mech. Eng192, 227-246 (2003).

. G. Allaire, F. Jouve, and A.-M. Toader, “Structural ogtiation using sensitivity analysis and a level-set method,

J. Comput. Physl94, 363—393 (2004).

. 0. Sigmund, “Manufacturing tolerant topology optimiaat” Acta Mech. Sinica25, 227-239 (2009).
. E. Andreassen, A. Clausen, M. Schevenels, B. LazarovQarBigmund, “Ef cient topology optimization in

MATLAB using 88 lines of code,” Struct. Multidiscip. Optird.3, 1-16 (2011).

. J. S. Jensen and O. Sigmund, “Topology optimization ferorRahotonics,” Laser Photonics Rey. 308-321

(2011).

. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, JoBnnopoulos, and M. Soljacic, “Enhanced nonlin-

ear optics in photonic-crystal microcavities,” Opt. ExgB&5, 16161-16176 (2007).

R. W. Boyd,Nonlinear Optics 3rd ed. (Academic, 2008).

H. Hashemi, C. W. Qiu, A. P. McCauley, J. D. Joannopowlad,S. G. Johnson, “A diameter—bandwidth product
limitation of isolated-object cloaking,” Phys. Rev.8§, 013804 (2012).

D. P. Bertsekadyonlinear Programming2nd ed. (Athena Scienti ¢, 1999).

B. E. A. Saleh and M. C. Teickkundamentals of Photonics (Wiley Series in Pure and Apfiptics) 2nd ed.
(Wiley-Interscience, 2007).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. Dd&)Baotonic Crystals: Molding the Flow of Light
2nd ed. (Princeton University, 2008).



15.
16.

17.

18.

19.
20.
21.
22.
23.
24,
25.

26.
27.

28.
29.

30.
31

32.
33.
34.
35.

36.
37.

38.

39.
40.
41.

42.
. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. RirfAlery,Numerical Recipes: The Art of Scientic

44.
45.
46.

47.
48.

49.

D. G. Rabusintegrated Ring Resonatqrgol. 127 of Springer Series in Optical SciencgSpringer,2007).

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipigiatwith planar silicon microring resonators,” Nano
Lett. 10, 2408-2411 (2010).

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “@u#ation of the Q factor in photonic crystal micro-
cavities,” IEEE J. Quantum Electro88, 850—856 (2002).

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. SmittHppen, L. C. Kimerling, Y. Jeon, G. Barbastathis,
and S. G. Kim, “Strain-tunable silicon photonic band gaprotevities in optical waveguides,” Appl. Phys. Lett.
84, 1242-1244 (2004).

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Qtqfio nanocavity in a two-dimensional photonic
crystal,” Nature425, 944-947 (2003).

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fineeturigh-Q photonic-crystal nanocavity,” Opt. Express
13,1202-1214 (2005).

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrdt@photonic double-heterostructure nanocavity,”
Nat. Mater.4, 207-210 (2005).

D. C. Dobson and F. Santosa, “Optimal Localization ofefgnctions in an Inhomogeneous Medium,” SIAM
J. Appl. Math.64, 762—774 (2004).

C.-Y. Kao and F. Santosa, “Maximization of the qualitytéa of an optical resonator,” Wave Motidib, 412—427
(2008).

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optiniarabf a single defect photonic crystal laser cavity,”
J. Appl. Phys103 033102 (2008).

J. Lu and J. Vuckovic, “Inverse design of nanophotorniacstires using complementary convex optimization,”
Opt. Expresd.8, 3793-3804 (2010).

A. W. Snyder and J. Lov@ptical Waveguide Theorcience Paperbacks, 198pringer, 1983).

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samiind E. Yablonovitch, “Smallest possible electromag-
netic mode volume in a dielectric cavity,” IEE Proceedin@3ptoelectronics45 391-397 (1998).

E. M. Purcell, “Spontaneous emission probabilitiesadta frequencies,” Phys. Re89, 674 (1946).

L. Novotny and B. Hech®rinciples of Nano-Optic§Cambridge University, 2006).

A. F. Koenderink, “On the use of Purcell factors for plasnantennas,” Opt. LetB5, 4208-4210 (2010).

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, SJéhnson, J. D. Joannopoulos, M. Soljaci¢, and
O. Shapira, “Enabling enhanced emission and low-threstadithg of organic molecules using special Fano
resonances of macroscopic photonic crystals,” Proc. Watld. Sci. U. S. A110, 13711-13716 (2013).

E. A. J. Marcatili, “Bends in optical dielectric guideBell Syst. Tech. J48, 21032132 (1969).

F. Ladouceur, “Roughness, inhomogeneity, and intedraptics,” J. Lightwave Techndl5, 1020-1025 (1997).
V. S. lichenko, P. S. Volikov, V. L. Velichansky, F. Tresast, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche,
“Strain-tunable high-Q optical microsphere resonatopt.&Commun145 86-90 (1998).

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultrathi@ planar silicon microdisk resonators for chip-scale
silicon photonics,” Opt. Expreskb, 4694—4704 (2007).

L. N. Trefethen and D. BaiNumerical Linear AlgebrdSIAM, 1997).

K. Inoue and K. Ohtak&hotonic Crystals: Physics, Fabrication and Applicatip@pringer Series in Optical
SciencegSpringer, 2010).

A. Oskooi and S. G. Johnson, “Electromagnetic wave socwmaditions,” inAdvances in FDTD Computational
Electrodynamics: Photonics and NanotechnolofjyTa ove, A. Oskooi, and S. G. Johnson, eds. (Artech, 2013)
Chap. 4, pp. 65-100.

J.-M. Gerard and B. Gayral, “Strong Purcell effect foA$nquantum boxes in three-dimensional solid-state
microcavities,” J. Lightwave Technadl7, 2089-2095 (1999).

0. J. F. Martin and N. B. Piller, “Electromagnetic scaitg in polarizable backgrounds,” Phys. Re\6& 3909—
3915 (1998).

G. D'Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M Bloemer, “Electromagnetic density of modes for
a nite-size three-dimensional structure,” Phys. Re%w3:057601 (2004).

J. D. JacksorClassical Electrodynami¢®nd ed. (John Wiley, 1975).

Computing 3rd ed. (Cambridge University, 2007).

M. E. Peskin and D. V. Schroedém Introduction To Quantum Field Theory (Frontiers in Plog3i(Westview,
1995).

S. G. Johnson, “Numerical methods for computing Cagimtgractions,” inCasimir Physics\Vol. 834 ofLecture
Notes in PhysicsD. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, eds. (8, 2011), Chap. 6.

L. D. Landau, L. P. Pitaevskii, and E. M. LifshiZ|ectrodynamics of Continuous Mediznd ed. (Butterworth-
Heinemann, 1984).

W. C. ChewWaves and Fields in Inhomogeneous Me(iizEE, 1995).

N. A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, I®Rige local density of states for homogeneous lossy
materials,” Physica B05 2915-2919 (2010).

L. V. Ahlfors, Complex Analysis3rd ed. (McGraw-Hill, 1978).



50.

51.
52.

53.
54,
. A. Christand H. L. Hartnagel, “Three-dimensional niiéference method for the analysis of microwave-device
56.
57.
58.
59.

60.

61.
62.

63.
64.

65.

66.
67.

68.
69.
70.

71.
72.

73.
74.
75.
76.
7.
78.
79.

80.

81.

82.

A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, anf@d.Sohnson, “Theoretical ingredients of a Casimir
analog computer,” Proc. Natl. Acad. Sci. U. S.107, 9531-9536 (2010).

X. Liang, Ph.D. thesis, Massachusetts Institute of ieldgy, 2013.

S. Scheel, L. Knoll, and D. G. Welsch, “Spontaneous yle€an excited atom in an absorbing dielectric,” Phys.
Rev. A60, 4094-4104 (1999).

C. Van Vlack and S. Hughes, “Finite-difference time-dmtechnique as an ef cient tool for calculating the
regularized Green function: applications to the locald glroblem in quantum optics for inhomogeneous lossy
materials,” Opt. Lett37, 2880-2882 (2012).

G. StrangComputational Science and EngineerifMyellesley-Cambridge, 2007).

embedding,” IEEE Trans. Microwave Thed$, 688—696 (1987).

K. YasumotoElectromagnetic Theory and Applications for Photonic @aig Optical Science and Engineering
(CRC, 2005).

W. Shin and S. Fan, “Choice of the perfectly matched lagendary condition for frequency-domain Maxwell's
equations solvers,” J. Comput. Phg81, 3406-3431 (2012).

T. A. Davis,Direct Methods for Sparse Linear Systems (Fundamentaldgofi#hms)(SIAM, 2006).

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Eéot Management of Parallelism in Object Oriented
Numerical Software Libraries,” IModern Software Tools in Scienti c Computirig. Arge, A. M. Bruaset, and

H. P. Langtangen, eds. (Birkhauser, 1997).

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Guop. Kaushik, M. G. Knepley, L. C. Mclnnes,

B. F. Smith, and H. Zhang, “PETSc Users Manual,” Technicgdd®eNo. ANL-95/11 - Revision 3.3, Argonne
National Laboratory (2012).

S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. KausMkG. Knepley, L. C. Mclnnes, B. F. Smith, and
H. Zhang, “PETSc Web page,” http://www.mcs.anl.gov/pefl2.

P. Hénon, P. Ramet, and J. Roman, “PaStiX: a high-paeioce parallel direct solver for sparse symmetric
positive de nite systems,” Parallel Computi2®, 301-321 (2002).

S. G. Johnson, “The NLopt nonlinear-optimization paekahttp://ab-initio.mit.edu/nlopt.

D. Liu and J. Nocedal, “On the limited memory BFGS methmrddrge scale optimization,” Math. Progra#®,
503-528 (1989).

K. Svanberg, “A class of globally convergent optimiaatimethods based on conservative convex separable
approximations,” SIAM J. Optimizl2, 555-573 (2002).

J. Nocedal and S. J. WrigiNumerical Optimizatior{Springer, 2000).

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, andwriel, “Robust design of slow-light tapers in
periodic waveguides,” Eng. Optimi#l, 365-384 (2009).

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, 8dyd, and S. G. Johnson, “Robust optimization of
adiabatic tapers for coupling to slow-light photonic-¢aysvaveguides,” Opt. Expre&9, 21558-21575 (2012).

Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “fa-quality-factor Bragg onion resonators with omni-
directional re ector cladding,” Opt. Let28, 2144-2146 (2003).

Z. Artstein, “Discrete and continuous bang-bang anidfapaces or: Look for the extreme points,” SIAM Rev.
22,172-185 (1980).

A. F. Oskooi, Ph.D. thesis, Massachusetts Instituteeohfiology, 2010.

J. Lu, S. Boyd, and J. Vuckovic, “Inverse design of a thdieensional nanophotonic resonator,” Opt. Express
19, 10563-10570 (2011).

B. Osting and M. I. Weinstein, “Long-lived scatteringoeances and Bragg structures,” SIAM J. Appl. Math.
73,827-852 (2013).

T. Inui, Y. Tanabe, and Y. Onodei@roup Theory and Its Applications in Physi&pringer, 1996).

S. Boyd and L. Vandenbergh@onvex OptimizatiofCambridge University, 2004).

P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-edilum transitions in sub/second harmonic genera-
tion,” Opt. Acta27, 321-335 (1980).

L.-A. Wu, M. Xiao, and H. J. Kimble, “Squeezed states ghtifrom an optical parametric oscillator,” J. Opt.
Soc. Am. B4, 1465-1475 (1987).

Z. Y. Ou and H. J. Kimble, “Enhanced conversion ef cierfoy harmonic generation with double resonance,
Opt. Lett.18, 1053—-1055 (1993).

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S.dBnson, ¢ and c® harmonic generation at a
critical power in inhomogeneous doubly resonant cavit@gpt. Expressl5, 7303-7318 (2007).

I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. RodriguézBravo-Abad, S. G. Johnson, and M. Loncar,
“Design of an ef cient terahertz source using triply resohaonlinear photonic crystal cavities,” Opt. Express
17,20099-20108 (2009).

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. tan K.-M. Wang, and S. G. Johnson, “High-
ef ciency second-harmonic generation in doubly-resonaffl microring resonators,” Opt. Expre&§, 7526—
7543 (2012).

M. W. McCutcheon and M. Loncar, “Design of a silicon m#iphotonic crystal nanocavity with a Quality factor



83.

84.

85.

86.

87.

88.

89.

90.
91.

92.

93.

94.

95.

96.
97.

98.

99.

of one million for coupling to a diamond nanocrystal,” OpkpEessl6, 19136-19145 (2008).

A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rudtrdigh quality factor one dimensional pho-
tonic crystal/photonic wire micro-cavities in silicon-@msulator (SOI),” Opt. Express6, 12084—-12089 (2008).
Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavés in low-index one-dimensional photonic crystal
slabs based on modal gap con nement,” J. Appl. PAg$® 043107 (2011).

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, rafitmall mode volumes in dielectric optical micro-
cavities,” Phys. Rev. LetB5, 143901 (2005).

M. Nomura, “GaAs-based air-slot photonic crystal nawviy for optomechanical oscillators,” Opt. ExpreX
5204-5212 (2012).

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, tSuka, T. Nakada, Y. Arita, and T. Baba, “Photonic
Crystal Point-Shift Nanolasers With and Without NanosBésign, Fabrication, Lasing, and Sensing Character-
istics,” IEEE J. Sel. Top. Quantum Electratv, 1632-1647 (2011).

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wongsibn of dispersive optomechanical coupling and
cooling in ultrahigh-Q/V slot-type photonic crystal cae#,” Opt. Expresd8, 23844—-23856 (2010).

0. Sigmund and J. Petersson, “Numerical instabilitie®pology optimization: A survey on procedures dealing
with checkerboards, mesh-dependencies and local minBtaytt. Multidiscip. Optim16, 68—75 (1998).

S. J. Osher and R. P. Fedkivevel Set Methods and Dynamic Implicit Surfat®gringer, 2002).

C.Y.Kao, S. Osher, and E. Yablonovitch, “Maximizing dayaps in two-dimensional photonic crystals by using
level set methods, Appl. Phys.®, 235-244 (2005).

J. K. Guest, J. H. Prévost, and T. Belytschko, “Achigviminimum length scale in topology optimization using
nodal design variables and projection functions,” Int. dmer. Methods Engs1, 238-254 (2004).

0. Sigmund, “Morphology-based black and white Iters fopology optimization,” Struct. Multidiscip. Optim.
33,401-424 (2007).

S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlingemsity Iter based on heaviside functions,” Struct.
Multidiscip. Optim.41, 495-505 (2010).

F. Wang, B. Lazarov, and O. Sigmund, “On projection meéshoonvergence and robust formulations in topology
optimization,” Struct. Multidiscip. Optim43, 767-784 (2011).

A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovskpbust OptimizatioiPrinceton University, 2009).

D. Bertsimas, O. Nohadani, and K. M. Teo, “Robust optatian for unconstrained simulation-based problems,”
Oper. Res58, 161-178 (2010).

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topologigniaption of photonic crystal waveguides with
tailored dispersion properties,” J. Opt. Soc. Am2& 387-397 (2011).

H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane, anddar&eFabrication-adaptive optimization with an
application to photonic crystal design,” arXiv:1307.5571

100. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. GaBeleil, “Coupling of nitrogen-vacancy centers to
photonic crystal cavities in monocrystalline diamond,yBHRev. Lett109, 033604 (2012).

101. L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.-J. @geM. Lu, D. Su, X. Yao, H.-C. Huang, |. Bayn, A.
Wolcott, R. M. Osgood Jr., and D. Englund, “Reactive ion gtghOptimized diamond membrane fabrication
for transmission electron microscopy,” J. Vac. Sci. Te¢hB31, 06FF01 (2013).

102. Z.Yu, A. Raman, and S. Fan, “Fundamental limit of lighpping in grating structures,” Opt. Exprek A366—
A380 (2010).

103. Z.Yu, A. Raman, and S. Fan, “Fundamental limit of namaphic light trapping in solar cells,” Proc. Natl. Acad.
Sci. U. S. A.107, 17491-17496 (2010).

1. Introduction

In this paper, we present a new technique for large-scalengattion of optical microcavi-
ties based on the frequency-averaged local density ofsstal20S), which circumvents com-
putational dif culties posed by previous eigenproblenséd formulations and allows us to
perform full topology optimization of three-dimension8t( leaky cavity modes. Essentially,
this technique allows us to minimize modal voluMéor a given cavity quality facto), or
equivalently a given bandwidth, by solving a singlemplex-frequencgcattering problem at
each optimization step, which is both computationally eetsian solving an eigenproblem and
avoids the dif culty of selecting which eigenvalue to optira. We presenproof-of-concept
results in both 2d and 3d computations in whalery pixelof the design pattern is a degree
of freedom (“topology optimization”), e.g. for lithograjatpatterning of dielectric slabs in 3d.
For a designQ of  10* in 3d for silicon slabs (index = 3:52), we obtain a modal vol-
umeV = 0:06(/ =n)3 (relative to the vacuum wavelength), which is 4 smaller than the best



comparablel volume found in the literature [1Here, the focus is on illustrating the technique
rather than on designing practical cavities (for which mgagd designs are already available
in the single-mode silicon case), so we do not incorporagelegizations [2—8] to force the
optimization to nd easily fabricated structures. Howewveur results are still useful in estab-
lishing theoretical bounds, showing that signi cant rooar fmprovement remains even for
silicon cavities.More importantly, we show that such optimization techn&jaan be applied
to design cavities for which (unlike silicon-slab singlede cavities) hand designs are dif cult
or unavailable, and in particular we desigroof-of-conceptninimal-volumemulti-modecav-
ities (e.g. for nonlinear frequency-conversion appl@asi [9, 10]) in Secs. 8.2.3 and 8.3. We
nd that the optimum doubly degenerate cavity appears tchbeetfold symmetric, while two-
frequency cavities have more complex shapes dependingeapotarizationalthough further
work is needed to obtain manufacturable structufégoretical optimization is also useful to
investigatethe tradeoff between the size of the design region and themuamw attainableQ

in slab-like situations (Sec. 8.4), and nd it to be roughkpenential. All of these results are
enabled by a sequence of mathematical transformationgafrtginal cavity-design problem,
depicted in Fig. 1: from the Purcell factQ=V to the more well-posed problem of minimizing
V for a givenQ (Sec. 2), from the eigenproblem to a scattering problemhgd DOS (Sec. 3),
from a frequency-averaged LDOS to a singemplexfrequency scattering problem [11] via
contour integration (Secs. 4-5), and nally from maximigihDOS to minimizing 1/LDOS
in order to circumvent optimization problems that arisedoarply peaked objectives (Sec. 7).
Even though the optimization problem is nonlinear and pbtpaon-convex [12], we obtain
similar optima for many initial structures (including vagu or random pixels), suggesting that
the result may be close to a global optimum.

Useful Q bounded

0 / v min V'
’ =
(section 2) 5. Q2 Q
(section 3) Turn ei.genproblem to
scattering problem
Causality

Contour integration .
LDOS(@ + if') ¢ mMax [mean LDOS(g; w)]

(sections 4, 5)

max

I/

———dw
(w— @)% +T12

/ LDOS(w)
(section 7)

1
LDOS(& + i)

min

Optimization speedup

Fig. 1. Starting with the naive objective of maximizing a naicavity's Purcell factoQ=V,
we perform a sequence of transformations of the problemderaio make it well posed
and tractable. Here, we give a schematic diagram of eachkftmamation, along with the
corresponding section of the paper in which they are distliss

Microcavity design, which seeks to con ne a cavity “modet folong time (dimensionless
lifetime Q) in a small “modal volumeV, has a long history [13, 14], and until recently has
been dominated by hand designs, from ring resonators [1%oJghotonic-crystal slab cavi-
ties [17,18], in which the parameters are manually tweakesbtain the desired results (or in
some cases computer optimization is performed over a hhofifiarameters [19-21]). These



manual designs have been tremendously successful, at@rperimentally veri edQ of 10°

or more in modal volumes only a few wavelengths in diamet8+p1]. However, fundamental
guestions remain: how close are the existing designs tddwretical optima (e.g. the minimal
V for any givenQ), and do the optimal designs resemble the hand designs tieyentirely
different? (As discussed in Sec. 2, the questiamisvhat is the maximun® or Q=V, because
those questions have a trivial theoretical answeyFurthermore, while design of single-mode
cavities in silicon slabs has been heavily studied and masigd heuristics are known, very
different designs and grueling effort may be required iricalty different circumstances, from
new materials to new design goals such as multi-mode ca¥dienonlinear optics [10]. Large-
scale “topology” optimization, in which the design pattescompletely determined by compu-
tational search (often with thousands of free parameteib)little or no a priori information,
offers a different route to addressing these questionho@iljh several authors have developed
topology-optimization techniques for microcavity des[@2—25], most of that previous work
was limited to 2d calculations [22, 23] and none of the presiwork fully addressed the de-
sign tradeoff betwee® andV. Some topology optimization dealt with lossless systents an
avoidedQ entirely [22], or maximized a 2 without controllingV [23] (which we argue in
Sec. 2 leads to an ill-posed optimization problem). Otherkwsed a “2.5d” heuristic for the
cavity radiation loss [25], which permitted 2d calculasoend led to intriguing designs, but
limits the attainableQ (to < 10*) because there appears to be no systematic way to improve
this heuristic loss estimate. One group did perform fullycattulations with absorbing bound-
aries to capture radiation loss [24], but limited their deg of freedom to a small region inside
a photonic crystal and included an unphysical absorbingn@twithin the cavity itself, lead-
ing to a heuristic objective whose calculation does not appe have a rigorous quantitative
relationship to key cavity propertieAs we review in Sec. 3, maximizing LDOS corresponds
mathematically to maximizing the power radiated by a dipmlerent source inside the cavity.
Naively, this may seem backwards: isn't the purpose of atgawiminimizeradiated power?
However, that intuition stems from the situation in whicle #gnergy densitinsidethe cavity

is held constant: there is an equati@r= wU=P relating the cavityQ and frequencw with

the radiated poweP and the con ned energy [14], so thatP  1=Q for xed U. In our case,
however, we are holding theurrent amplituden the cavity xed, in which case the radiated
powerP  Q (asreviewed in Sec. 3) while one can show from a coupled-rfradeework [14]
thatU Q2. Conversely, minimizing radiated power for a xed currerwid correspond to
minimizing LDOS, which would result in th@bsenceof resonances. (Interestingly, Frei et
al. [24] actuallyminimizedradiated power from a xed-current dipole, but their inteadion

of a heuristic absorbing region inside the cavity appayettimpensated for this inverted ob-
jective and resulted in a resonant mode, albeit a mode aptithan unclear objectiveQn the
other hand, our work adapts two crucial ideas from [24]: mm)\a scattering problem rather
than an eigenproblem, and optimizing over a nite bandwiddbr did any previous work, to
our knowledge, address topology optimization of multi-racdvities.

2. Eigenproblem formulation

There are two key gures of merit for a resonant mdgl¥x) of a cavity: quality factoQ and
modal volumeV. The quality factoQ is a dimensionless lifetime, andQ@ is a dimensionless
decay rate [14]. Mathematicallyp is related to the frequency-domain Maxwell eigenvalue
problem:

. 1 .

N WN E"(x) = we(x)E"(x) 1)
with radiation boundary conditions. Because of the lossynolary conditions, the eigenprob-
lem is non-Hermitian and the eigenvalues are complex.Q fier the modeE"(x) with eigen-



frequencywy, [14] is
Re[wh]
2Im[wn]’

Q= )
Technically, if one considers an in nite open system (asaygul to a nite system with
some absorbing boundary layer), a number of mathematitdleties arise because the leaky
“modes” are not true normalizable eigenfunctions, but atiear related to the residues of poles
in the Green's function [26]; however, we will circumvent af these dif culties in this paper
by transition to a Green's-function LDOS approach in Sed& tloes not deal explicitly with
eigenvalue problems. The modal volumg¢27], de ned as

R o(IE"()j2x
= maxt e(JE(N)2g’

3)

is a measure of the volume within which the mode is con nedti@dugh Eq. (3) is a standard
expression, it should really be viewed as the modal voluntberimit of a lossless cavity. For
a lossy cavity, e(x)jE"(x)j%dx does not converge in an in nite open system; a more rigorous
treatment is to de ne the LDOS in terms of the Green's functés in Sec. 3 and obtain the
Purcell factor from the ratio with the LDOS of the homogernemedium.) The Purcell factor
[28], which describes the enhancement of spontaneousiemisde, can be written as [29, 30]

3Q I 3
4p—2Vﬁ' (4)

Herel is the vacuum wavelength amds the index of refraction.

For applications with light-matter interactions (such asels, sensors, and nonlinear fre-
guency converters), maximal lifetin@ and minimal modal volum¥ are desirable [31]. It is
therefore tempting to use the Purcell factor in Eq. (400e¥ as the gure of merit for cavity
optimization. Unfortunately, maximizin@=V leads to an ill-posed problem, because the maxi-
mum of Q=V is ¥; for example Q=V grows exponentially with radius for a ring resonator [32].
In practice, any optimization in a nite computation celllixabtain a nite Q andV [23], but
the values are then just an artifact of the nite computatia@omain; in this sense, maximizing
Q=V is not well-posed because the solution does not convergeasioreases the size of the
computational domain.

In practice, however, there is an upper bound on the u§gfal two reasons. First, besides
the intrinsic radiation lossJ;4q) in a cavity, there are also radiation losses due to surfaogr-
ness Qroughnesy and material absorptioapsorption. The total loss rate=qtal is the sum of
these three effects [14]:

1 1 1 1
—= —+ + :
Qtotal Qrad Qroughness Qabsorption

(5)

In real applications, therefore, tli&.a cannot be arbitrarily large. For example, in integrated
optics it is dif cult to get Qs more than a few million due to surface roughness [33], alifmou
microdisk and microsphere resonators can achieve highey delocalizing the mode away
from the surface [34, 35]. Second, there is another qualityolr in the system. For any cavity-
based device, the cavity is always intentionally coupleddme channels (e.g., waveguides)
to get light in and out. That coupling process will be desediby its own lifetimeQcoupiing It
turns out that the losses in such a coupled device are piopalto Qcoupiing=Qtotal [14]. Once
these losses are decreased below the desired loss buddghitloes not matter in practice if
one decreases them further.



A better optimization problem might be, instead, to max@@=V subject toQ = Q, or
alternatively:

minV
stQ §

whereQ is determined by the bandwidth and loss tolerance of agijuits. By solving the
non-Hermitian Maxwell eigenproblem Eq. (1), one could @b@ andV from eigenvectors
E"(x) and eigenvalues, through Eq. (2) and Eqg. (3). Then a natural question to askistw
eigenvalue one should optimize. In practice, one has somsigmiérequencyw given by the
application, so one could optimize the eigenvalue closest.t(Equivalently, thanks to the
scale-invariance of Maxwell's equations [14], we choosg&suso thatw = 2p, in which case
the main computational choice is the resolution, i.e. thelner of pixels per wavelength,
and in some cases a slab thickrés$ However, asking for the mode closestifoleads to
discontinuities: as the structure changes during optititimathe mode closest t will tend to
hop discontinuously. Although there are some ways to dealthis [22], the problem becomes
worse when one simulates the radiation loss in a patterredelatiic slab, because in this case
the nite cell is approximating a continuum of radiation nesdabove and below the slab. As
a result, there are more and more closely spaced modes aslltiseze increases. Hence, we
want to circumvent this dif culty by adopting a new approadtirning the eigenproblem into
a linear scattering problem. This also reduces the compuatdtexpense, because we will now
require only a single linear solve per structure, wherealng eigenvalues in the interior of a
spectrum (e.g. by the shift-and-invert algorithm) regsiimeany linear solves [36].

(6)

3. LDOS formulation

The well-known Purcell factoi@=V and variations thereof) is, in fact, only approximatiorof

a more fundamental quantity, the local density of statesgB[} which is de ned in terms of the
Green's function of the system (and can be related to a “tenimodes” per unit frequency
per unit volume) [37]. Paradoxically, thexactLDOS iseasierto compute thaiQ=V, because
the former involves only a scattering problem (a lineareysbf equations) whereas the latter
involves a non-Hermitian eigenproblem (for a leaky modehia interior of the spectrum). In
this section, we brie y review the de nition of the LDOS anaW it relates taQ=V, and in the
next section we describe how the LDOS can be used as the igbjémt a well-posed cavity
optimization problem.

In particular, we begin with the per-polarization LDOS (jr LDOS), denoted by
LDOSj(w;x9 for a polarization in directiorj, which is proportional to the power radiated
by a dipole in direction (unit vectorg;j at positionx? with a frequencyw, i.e. a current
J ge Mdx x9. (The total LDOS is simplé ; LDOS;, proportional to power radiated
by a randomly oriented dipole.) This is a key physical qugrtecause quantum uctuations,
e.g. spontaneous emission or thermal uctuations, can®sead semiclassically as dipole cur-
rents, and the LDOS yields the enhancement of these udnatby any given geometry. For
example, the spontaneous emission rate is proportion&letd DOS [29, 38], and therefore
the ratio of LDOS between two systems indicates enhanceonesippression of spontaneous
emission. The Purcell fact@=V is an approximation to this LDOS enhancement for a igh-
microcavity, assuming that the emitter (e.g. atom or quardot) is positioned and oriented at
the location of peak LDOSIn the cavity [29, 30, 38, 39].

These quantities can be de ned more precisely as follows 32938, 40, 41]. Poynting's
theorem [42] implies that the power radiated by a dipk{he is

Z
Py(w;x9 = % Re[J (x) E(x)]dx; 7)



whereE(x) is the total electric eld solving the frequency-domain&eang problem

M (eW)E(x) = iwd(X)
M (e;w) = N %N e(x)w? (8)
Jx)= d(x x98:

This yields the followingwvell known [29, 37, 38, 40, 41de nition of LDOS;:

12 6 *
LDOS;j(w;x9 = FPJ-(W;XC)= ERe J () E(X)dx ; (9)

where the 12p factor is a conventional normalization that arises fromdhal interpretation
of the LDOS as a local “density” of eigenstates [29, 38]. (Tloemalization is irrelevant for
optimization or for evaluating LDOS ratios in different $gis1s to obtain enhancement factors.)

In the limit of a low-loss cavity, in which the LDOS is domieat by the contribution of a
single pole in Maxwell's equations (a single “resonant nipdene can derive the approxima-
tion [38]

6 Q
pwe(x9 VvV
and Fl_;y taking the ratio of this quantity with the LDOS of a haganeous medium with index
n= " e one [29] obtains the traditional Purcell factor Eq. (4). largcular, the LDOS in a
microcavity resonating a frequendy(1+ i=20) is approximately in the form of a Lorentzian
peak centered at with a bandwidthv=2Q [38], and the Purcell factor is the enhancement at
the peak. This relationship betwe@muand LDOS bandwidth is the key to obtaining a tractable
well-posed optimization problem in the next section.

We propose that LDOSor its variants can be used as gure of merit for the charézéion
and optimization of a microcavity. Note that the precisergwf merit should really depend
on the application. For example, if we are interested in fflentaneous emission rate for the
dipole at a speci ¢ positioxwith a speci ¢ polarizatiorg;, then LDOS(w;x9 is the most
relevant gure of merit. On the other hand, if we have a dipatea speci ¢ pointx® with
a randomly distributed polarization, then the gure of ntevould be& ; LDOS;(w; x9 (for
the average case) or minDOS;(w; x9 (for the worst case). In nonlinear devices for frequency
conversion (in particular, second harmonic generatiomgee relevant gure of merit might be
min, LDOS;(wh; X9, wherew, are different frequencies of interest. Instead of at a sipgint
xY if the dipoles of interest are distributed [with probatyililensity thgctiors(x)] in a region
V with polarizationg;, the most relevant gure of merit in this case ([gLDOS;(w; x)s(x)dx.
Depending on the applications for enhancement or inhijtice should maximize or minimize
the gure of merit correspondingly. Many other variatiormudd be devised.

For all the above mentioned applications, LDQASthe basic building block. We therefore
focus on this case: we maximize the spontaneous emissieriaraa dipole at a point® with
given polarizatiorg;. For simplicity, from now on, we shall omit the expliqitandxodepen-
dence from LDOH(w; x9, and simply write LDO$w) to denote the gure of merit given in
Eq. (9). In Sec. 8.2, however, we will also consider a caseravtize dipole polarization is
randomly distributed, and in Secs. 8.2.3 and 8.3 we considdi-mode cavities.

LDOS;(w;x9 = ; (10)

4. Frequency-averaged LDOS

In previous section, we proposed that one way of attackiegtioblem of microcavity design
is to maximize the LDOS. However, simply maximizing LD@® in Eq. (9) is still ill-posed



as in Sec 2, being equivalent@=V. As explained in Sec. 2, a well-posed formulation could
be obtained by specifying a desired cavity lifetit@e In terms of LDOS, this is equivalent
to specifying an upper boun&=2Q on the bandwidti&. For computational convenience, we
instead maximize thaverageLDOS over this nite bandwidttG:
Zy
L= . LDOS(w)W(w)dw: (12)

Here,W(w) is some weight function or window function we choose, whielpéaked around
the design frequency and decays rapidly (with a nite integral) outside of a bardiv G
aroundw. As we will explain in Sec. 4.3, it will turn out thaterforming this average is math-
ematically equivalent to computing the LDOS at a single diestpy with an absorption loss
added into the systenwhich effectively limitsQ to the desired bandwidth (more precisely, for
Q Qthe gure of meritis dominated by the modal volume). Equératly, asQ increases the
LDOS of a resonance approaches a delta function with andjglitul=V [38], so that the inte-
gral Eq. (11) is determined mainly by theM factor as soon as the resonance is narrower than
G(Q Q). The key point is that maximizing the bandwidth-averag&IS regularizes the
optimization problem to eliminate the possibility of digéng-Q solutions as the computational
cell size increases.

The main remaining question is how to ef ciently compute verage LDOS of Eq. (11).
The most straightforward approach would be to apply a stahdamerical-integration pro-
cedure [43], which would involve evaluating the LDOS (isolving a scattering problem) for
many separate frequencies over the bandw&{fThis is similar in spirit to the multi-frequency
optimization approach of [24].) However, as described aribxt two sections, we can exploit
techniques from complex analysis to evaluateakactLDOS integral by solving only &in-
gle scattering problem at eomplexfrequency + iG. The key to this technique is that the
LDOS derives from a causal Green's function, as reviewedein. 8.1. This allows us to per-
form a contour integration, with an appropriate choic®\{iv), in order to obtain the integral
as described in Sec. 4.2. As explained in Sec. 4.3, we caterpiet any complex-frequency
scattering problem as a real-frequency scattering problgimcomplex materials (i.e., absorp-
tion). Finally, in Sec 5 we discuss convenient choices ofitmelow functionwW(w) that reduce
the contour integral to ainglecomplexw scattering problem. (We previously applied a very
similar application of causality and complex analysis talgsis of electromagnetic cloaking
bandwidth [11], and related ideas can be found in quantuhtleéory [44, 45].)

4.1. Causality and analyticity

Before we proceed, we rst de ne a functiof{w), which is a complex version of LDG®/):

62
f(w;x% = b J (X) E(x;w)dx: (12)

Comparing with Eq. (9), itis clear that LD@®) = Rg f(w)]. [From now on, we will omit the
x%dependency of (w; xY.] Note that the operatd (e;w) given in Eq. (8) is a linear operator
relating the electric eldE(x;w) to the (time-harmonic) input electric curred(tx) at a given
frequencyw. Causality [the electric eld= comes after (not before) the curreliimplies that
E(x; w) is analytic in the upper-half complex-plane [46]. Thereforef (w) is also analytic in
the upper-half complex plane.
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Fig. 2. Contour integration path. The frequency-average@®8§ is the path integral along
arc A in the limit of an in nite-radius arc. By choosing the propeindow/weight function
W(w) for optimizing LDOS in a desired bandwidth, the contribatelong arcs A and Ag
can be made negligible compared te. Aherefore, the residues at poleg enclosed by
this contour can be used to approximate the averaged LDOS.

4.2. Contour integration

In this section, we are going to compute the mean LDOS by ékmpdahe analyticity off (w),
via:
Zy Zy Zy
L= LDOS(w)W(w)dw = R f(w)]W(w)dw = Re p.v. f(w)W(w)dw : (13)
¥ ¥ ¥

Here, p.v. denotes the Cauchy principal value, which we @smilse the imaginary part of
f(w) may have a singularity a¥ = 0, as in the case df(w) in free space [40,42,47,48]. Now
we want to complete our integration contour (Fig. 2) in theemphalf plane and evaluateby
residue theorem [49]
z z z
+ + f(W)W(w)dw = 2pié Req f(W)W(w); w]: (24)
A1 Az As K

Here,wj denotes a pole aV/(w) in the upper-half plane and Res is its residue [49]. In Sec. 5,
we will chooseW(w) so that these poles and residues are easy to evaluate. frustiee we
can choose the weight functioM(w) so that it decays faster tharjwj2 for largew, in which
case the contribution from arcsAwill be zero since LDOSW) is proportional tow? in 3d (or

w in 2d) free space anf(w)W(w) will decay faster thanZjwj on arc A. We can obtain the
contribution from arc A by evaluating the residue due to the simple polé @¥) atw= 0

Zz
f(w)W(w)dw = }2piW(O) lim wf(w): (15)
’ 2 w0

The factor 1=2 comes from the fact that the integration is along a clockwamicircle. Since
the weight function is peaked around design frequeliayith some narrow bandwidt6, we
can require thatV(0) is small, and therefore the contribution from & negligible comparing
to the residues atj. From Eq. (13)L is just the path integral along the path f46]. Therefore,



we have
" #
L= Re 2pi§_ Red f(W)W(w); wi] + f(w)W(w)dw
oK w2 (16)
Re 2piQ Reqdf(W)W(w);wm] :
k

4.3. From complex frequency to material absorption

To compute the residue at the complex poles, we need to dwvechattering problem at com-
plex frequencies. More precisely, the scattering problem(B) at complex frequenay + iG
can be written as

N %N e(X)(w+ iG? E(x;w+ i(!;)z i(w+i9J(x)
- 1 . G - -

0 N mN e(x)w? 1+ i | E(x;w+ i0) = iwd(x) a7
i 1 i i S |

0 N mN e(x) 1+ 20 w? E(;wHiQ = iwd(x):

We denote this complex scattering operatol\,l)}(e; w), namely

= e(x) 14— w2= R N &x)w? (18)

I S v 1
mX)(1+ ) 2Q )
Clearly, this is equivalent to solving a scattering problanteal frequencyv with materials
é(x) = e(x)(1+ i=2Q) andm(x) = m(x)(1+ i=2Q). (In fact, any change to the frequency can
be converted into a change of materials [50].) In particuddding a positive imaginary part

to w (for w in the upper-half plane [11]) corresponds to a positive imagy part ing(x) and
(x), which corresponds (with o " convention) to an absorption loss.

M (ew)= N

5. Possible window functions

In this section, we discuss two convenient window functiamsimple Lorentzian and the
square of a Lorentzian. (A third possibility, the differencof two Lorentzians is discussed
in [51].)

5.1. Asimple Lorentzian

The simplest window function, with only a simple pole in thgper-half plane, is a Lorentzian
centered afv with half-width G. The frequency-average LDOS against this weight is

Z ~
G=p o e
L]_ = LDOS(W)m = qu(W"‘ |G)], (19)
which only requires solving the scattering problem Eq. (&7a single complex-frequency
W+ iG Ly is a perfectly nite, well-de ned quantity in a discretizesimulation with a nite
spatial resolution ( nite grid).

In combination with Sec. 4.3, the objective Eq. (19) has gpfninterpretation that coin-
cides with the discussion in Sec. 2. Our frequency-avera@#dS objective is equivalent to



maximizing the LDOS at a single frequency, i.e. the Pur@atdrQ=V of a cavity, but a cav-
ity in which an absorption loss has been added to otherwisgdss materials. In particular,
the absorption loss that arises from multiplyieg) and n(x) by 1+ i=2Q can be seen from
perturbation theory [14] (foQ 1) to yleId an absorption lifetime of exactQansorption= 0.
From Eg. (5), this means th&ota O, and that increasin@rad O will have little effect
on the Purcell facto®,=V. Hence, optimizing the frequency-averaged objective teitd to

increaseQaq Until it is > Q, and after that will mainly try to decreasg similar in spirit to
Eq. (6).

However, a careful examination reveals that this simpleagye does not converge as the
resolution increases. There are two equivalent ways torstated this. First, in a continuous
medium, the integral does not converge because the winduostifuin decays like 2jwj? while
LDOS(w) behaves likgwj (in 2d free space) gwj? (in 3d free space) for largevj. (For nite
spatial resolution, there is an upper frequency cutoff &tiatinates this divergence.) Second,
from the relationship between the complex-frequency sdatj and lossy material discussed
in the previous section, we know that the residu@fRé + iG)] is actually the power emitted
by a dipole inlossymaterial, which is the sum of the power radiating to the algsif the
cavity and the power absorbed by the lossy material in théycpdd]. It is known that this
absorbed power is in nite becaudgx) diverges as #r2 in the neighborhood of the dipole
(in 3d free space) [40,47,52,53]. (In a lossless mediumy tm[E(x)] diverges as #r3, so
LDOS RdE(x)] is nite.) In discretized space, the Green's function ist@iand diverges as
(resolution® in 3d. To avoid this singularity, we need to choose windowctions which decay
faster thajwj® at largejwj. Two natural candidates are the difference of two Loren[&1]
and the square of a Lorentzian.

5.2. Square of a Lorentzian
To ensure that thé/(w) decays faster tharsjwj2, we propose the window function,

2G=p

ww)= ——;
W= e

(20)

which is a normalized square of a Lorentzian function. Thisdew function has a double pole
atw= W+ iGin the upper-half plane. Applying the residue theorem, weetfeom Eq. (16)
and Eq. (20)
Zy
L= , LDOS(W)W(wW)dw Re f(Ww+iQ iGf{w+iQ ; (21)

wherefY ) denotes differentiation with respectm In appendix 10, we show that

Fow:x9 = f(w, X()+ > e(x)ET(x;W)E(x;W)dx: (22)

From Eq. (12) and Eq. (22), it is clear that bdttw + iG and f{ W+ iG can be obtained from
a single scattering solutida(x; w + iG) (see appendix 10) and
f(W+i0) iéfo(vT/+ ié)
z

= ~( —)e E(x; W+ iQ+ —ZG e(X)ET(x;Ww+ iQE(x; W+ iQdx: (23)
W+ iG p

In summary, we can still obtain the entire frequency-aveddgDOS by solving a single scat-
tering problem Eg. (17) at a complex frequeniy iG



We know that Eq. (20) gives a nite average LDOS because iaggdast enough withv,
but it is interesting to also consider how it xes the divenge from the second viewpoint in
Sec. 5.1 (that of the in nite power absorption from a dipal@ilossy medium). The explanation
is essentially that the second term in Eq. (23) is roughlytdraation of the divergent absorbed
power from the rsttermGeis wim(&) from Sec. 5.1, and/Im(&)jEj? is absorbed power [41].
(A subtlety arises from having ETE, rather thanj Ej?, but the % divergence at ! 0
should be dominant in I¢E) for smallGso one should havé' E IM(ET")IM(E) | Ej?
asr! 0)

Since the role of the second term in Eq. (23) is essentialgutaract off the divergent ab-
sorbed power in lossg medium, and this divergence comes from tlve®1 eld divergence
that is independent of geometry (the scattered eld fromsheounding geometry is nite at
r = 0), one might expect that the second term in Eq. (23) platys fible in geometry optimiza-
tion at a xed resolution. Indeed, we nd in numerical expagnts that the optimizationgith
andwithoutthe second terms in Eq. (23) for the 2d TE case (discusseddn8S®) discover
similar structures. Therefore, in Sec. 8 we optimize thepsimsingle-Lorentzian objective of
section 5.1, although Eg. (23) is computationally feasihittoecomes necessary.

6. A preliminary formulation

Now we have a preliminary formulation for our cavity optiration in terms of the frequency-
averaged local density of states:
Zy
max L= LDOS(w)W(w)dw: (24)
f designg ¥
We can evaluate the objectilzdby contour integration, which only requires us to solve thme
plex scattering problem Eq. (17) once. If we choose the winflmctionW(w) from Eq. (20),
then the problem can be reformulated as

max L= Re L = f(W+iQ iGI{w+iQ : (25)
f designg

Mathematically, to compute the objective in Eq. (25), wechee

1. For givene(x), W, and G, solve the complex scattering problem Eq. (17) to obtain
E(x; W+ iG).

2. ObtainL from the solutiorE(x; W+ iG) through the formula Eq. (23).
3. Take thereal partdf to getL.

To speed up the optimization, we must also have the gradfahtembjective with respect
to the design parametex (the dielectric constant at each “pixelt). Applying the standard
adjoint technique [54], only one more linear system with $hene operatoM (e;w) but a
different source term need be solved to obtain the gradiéaprovide the detailed calculation
in appendix 10 and summarize the procedure here:

1. Solve the complex scattering problem
M (e W)A(X, W+ iG) = e(X)E(xX; W+ iG) (26)

to obtainA(x; W+ iG).



2. The gradienf/lL =fg is a combination oE(x; W+ iG) andA(x; W+ iG) (see appendix

10):
L 1 2. . L
7177_&( = i+ 6 EWET(XK;W+ IQE(x;w+ iQ
*152% 1+2L(5 AT (x; W+ iIQE(x W+ i0):  (27)

3. Take the real part dfL =7 g to obtainfL=1&.

Note that the scattering operator Eq. (26) in the sensjtaitalysis is the same as the operator
in the objective evaluation. We can take advantage of thiehging the information (e.g., the
preconditioner or LU factorization) from the solution of K@7). We will discuss this in detail

in Sec. 7.1.

7. Numerical scheme for cavity optimization

In this section, we discuss the numerical implementatiorofa frequency-averaged LDOS
formulation given in Sec. 6. In order to solve this PDE-coaisted optimization problem com-
putationally, we need fast and ef cient implementationsdbjective evaluation, gradient eval-
uation, and optimization.

7.1. Objective and gradient evaluation

As we discussed in Sec. 6, evaluating the objective LDOSwegsolving the scattering prob-
lem Eqg. (17). We can apply any standard frequency-domairesééchnique to this problem
(e.g., nite-difference, nite-element, or boundary-ebent methods). Here, we simply adopt
the nite-difference approach [55-57]. If we impose mireymmetry planes in the system, we
can obtain an 8-fold reduction in the number of unknowns &se8.5.1).

For the nite-difference frequency-domain (FDFD) methdlde most robust solution tech-
nigque is a sparse-direct solver, which is excellent in 2d,dxpensive (in both memory and
time) in 3d [58]. In contrast to direct solvers, iterativév&ss (e.g., GMRES or BiCGStab) work
quite well if one has a good preconditioner [36]. Here, we bisra both of these techniques.
During the optimization, we re-solve many times for slighdifferent structures. Therefore,
we can use sparse-direct factorization from one step ascama@ioner for iterative solvers in
many subsequent steps [51]. We implemented the FDFD soltethe parallel sparse-matrix
library PETSc [59-61] and the parallel sparse-direct 3dR&StiX [62].

7.2. Optimization scheme

We use a free-software implementation [63] of standard igraebased optimization algo-
rithms, and we nd that low-storage BFGS [64] and consemeationvex separable approxi-
mations (CCSA) [65] work equally well. However, we nd that® additional mathematical
transformation is required in order to optimize higheavities: instead of maximizing, we
minimize 1=L.

If we attempt to maximizé. directly as in Eq. (24), we typically nd that the convergenc
of any standard optimization algorithm slows to a halt @& 1000. The reason for this is
that, for highQ cavities, the objective function becomes a “narrow ridge’sharply-peaked
function along some low-dimensional manifold in the partenepace), with a large second
derivative ( Q3, as shown in [51]) in the direction perpendicular to the edgnd it is well
known that optimization along narrow ridges is problemf®&j. Most algorithms tend to “zig-
zag” slowly along the ridge, and even quasi-Newton methid@dsHFGS break down when the



second derivative is so large that the Hessian matrix besdirmnditioned. However, because
the LDOS is strictly positive, there is a simple solution:ximaizing L is equivalent to minimiz-
ing 1=L, and the reciprocal of a sharp peak is a shallow valley, sowgthat the £L objective
avoids most of the problems of slow convergence. (For exanmpthe 2d TM optimization to
be discussed in Sec. 8.1, maximizatiorLahakes no progress if the initial structure is a high-
Q photonic-crystal cavity, whereas minimization efllconverges to a signi cantly improved
structure as described below.)

In practice, there is another useful technique: a sucaessimement strategy (somewhat
analogous to [67,68]). We found that gradually increasirgspeci edQ (decreasing the band-
width 1=Q) tends to reduce the likelihood that the optimization beestmapped in a poor local
optimum close to the starting structure, and usually pred@cmuch better result at the highest
Q. That is, we optimize fo = 10, then use that result as a starting point for optimizaion
Q= 100, and so on.

8. Results for cavity optimization

In this section, we present some 2d and 3d cavity-optinumatésults, summarized as fol-
lows. We start with high-resolution 2d cases, and run sitraria with different initial guesses
(vacuum, photonic crystal with a defect, and random stmesfuand different dipole polariza-
tions (TM, TE, and random). In the region to be optimized, Wevathe dielectric constant
e 2 [1;12:4] at each pixel to be one degree of freedom [Fig. 3(a)]. For th& R case, the
optimization discovers similar structures for maximizithg spontaneous emission rate of a
speci c dipole polarization and eandomlypolarized dipole. However, optimizing theorst
case of a randomly polarized dipole nds a three-fold symmoedtructure (Sec. 8.2.3), while
two-frequency cavity optimizations yield more complextpats depending on the polarization
(Sec. 8.3). In another 2d scenario, to obtain @heersusV tradeoff analogous to 3d slabs,
we limit the degrees of freedom in one direction and chooderastrip, instead of a square,
as the region for optimization [Fig. 3(b)]. As the degreefreédom increase, the radiatiGh
rst increases and then becomes saturated, limited by tieenigal precision in the computa-
tion. Finally, we ran a full 3d optimization on a su;?)eﬂrrmLHnd obtained a structure with
extremely small mode volumé = 0:06(/ =n)3, (n= " 12:4). In the following, we are mini-
mizing 1=L (the inverse of the frequency-averaged LDOS) and variatibareof, as described
in the previous sections, but for simplicity we describes thélow as “maximizing LDOS.”

Here, the focus is on illustrating the formulation and ombkshing theoretical bounds. Fur-
ther regularization techniques are generally requiredbtain easily manufacturable structures,
as discussed in Sec. 9.

8.1. 2D TM case

In this section, we maximize the LDOS for a dipole with TM pagation E out of plane)
in a 2d setting [Fig. 3(a)]. One possible starting point ishatpnic crystal with a defect [14],
like the one shown in Fig. 4(a). This is a periodic arrangenfpeariodicity a) of dielectric
silicon rods (radius @a and permittivitye = 12:4) with one defect rod at the center (radius
0:1a). The defect TM mode is at frequencyB@(2p=a), with quality factorQ = 1:41 10°and
mode volume/ = 0:097(/ =n)2. With this structure as an initial guess, we run the optitiira
and obtain an entirely different nested-ring structurg[Bib)] with quality factoiQ = 1:01
10'° and mode volum¥ = 0:075/ =n)2. Clearly, the optimization itself discovers a “radially
periodic” structure, reminiscent of a Bragg onion [69] . Weoarun the optimization with
vacuum as initial guess and obtain similar structure (FjgwBh Q= 1:30 10° andV =
0:075/ =n)2.

In these two optimizations, we gradually increase the spe@ (we decrease the bandwidth
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(a). A square region for degrees of freedom. (b). A thin strip region for degrees of freedom.

Fig. 3. For 2d cavity optimization, we start in Secs. 8.148;®ptimizing over every pixel
in the interior of the computational domain as indicatedaj {This leads to cavities that
utilize bandgap structures to con ne light with arbitra@y regardless o¥/, limited only
by the size of the domain. In order to investigQevs.V tradeoffs analogous to those in
3d slabs, in Sec. 8.4 we limit the degrees of freedom to a thip &), which imposes
intrinsic radiation losses (perpendicular to the strig) orces the optimization to sacri ce
V in order to increas®. A full 3d optimization is considered in Sec. 8.5.

1=Q) from 10 to 183. The optimization a@ = 10 actually gives a higl cavity (almost the same
radiationQ) with the resonance at about 1.@@3The optimizations at highed simply tune
this structure so that the resonant frequency becomes ntosér¢ow. In a two-dimensional
situation such as this, there is no intrinQa/ersusv tradeoff, unlike in 3d slabs [14], because
Q! ¥ for a nite modal volumeV as the number of layers in a Bragg onion increases [69].
So, the optimization in such a 2d case is mainly minimiaihgvhile theQ is bounded only by
the computational-cell size.

Note that we allow the dielectric permittivity of each pix@l vary continuously from
anin = 1:0 to @nax= 12:4, but almost all the pixels (except a few at the interfacespaeither
Emin OF 8max in the optimized structure. This phenomenon (reminiscgfitang-bang” solutions
in control theory [70]) had also been observed empiricallgther cavity-related optimization
work [3,71,72]. There has been some recent progress inqggaveoretically that this is the ex-
pected solution: Osting and Weinstein [73] recently anadlyaptimization problems for scalar
waves, and showed that maximizing an energy con nement tiveg the permittivity at every
point in space generally leads to a solution in which the [t@kity is either the maximum or
the minimum allowed value at every point, excepting a set edsure zero (e.g., at the inter-
faces between regions) in the limit as the resolution goés mity. However, we also obtain
counterexamples for other types of cavity optimizatiog, @ the doubly-degenerate cavity
design of Sec. 8.2.3, where substantial regions convergédionediate values. Fortunately, in
cases where this occurs, there are a variety of techniquidsam binary solutions as discussed
in Sec. 9

8.2. 2D TE case

In this section, we consider the 2d TE polarization, for wh{anlike the TM polarization
of Sec. 8.1) the objective function breaks rotational symmyand we do not expect similar
Bragg-onion solutions. We will start with maximizing LDO®rfa xed & polarization in
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Fig. 4. 2d TM optimization from PhC cavity initial guess (S8cl).
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Fig. 5. 2d TM optimization from vacuum initial guess (Secl)8Q=1.30 10° andV =
0:075(/ =n)2.

8.2.1. For arandomly polarized dipole, we consider two €as@ximizing the average over all
polarizations in 8.2.2 and maximizing the minimum (worst&pgover all polarizations in 8.2.3.

8.2.1. Fixed dipole polarization: max LDQ®; &)

For the 2d TE polarization, let us rst look at the case whére dipole is polarized in thé,
direction. In other words, we want to maximize LD@8&y). From a vacuum initial guess,
the optimization discovers the structure shown in Fig. 6isTdtructure has quality factor
Q=5.16 10® and mode volum¥ = 0:092(/ =n)2. [Again, theQ = 10 gives an equally higp
cavity with resonant frequency atdDO7A¥. The optimizations at high&p = 102 to 1P simply
tune the resonant frequencyvio] For a random initial guess (uniform random pixels), wevals
obtain the same structure as the one from a vacuum initi@dgjwehich suggests that the result
may be close to a global optimum.

8.2.2. Randomly polarized dipole: maxmgaDOS(W; &)

Now we want to study the case in which the dipole is randomlgnimed in the plane and the
objective is the mean LDOS. One might hope that the optinorawill nd a structure that
resonates for both polarizations at the same frequencyhanck by linearity will resonate for
all in-plane polarizations—this corresponds to the rezgmuient that the microcavity be doubly
degenerate, and many symmetry groups besides circular sysnoan support double degen-
eracies (such as three-fold, four-fold, or six-fold symriced structures [74]). However, we nd
that this is not the case: the optimization nds a singly resat cavity that enhances LDOS for
one polarization (chosen “randomly” depending on theahgtructure) at the expense of the
other polarization. As explained below, this suggeststti@at DOS of the best single-mode TE
cavity is more than twice the LDOS of the best doubly degaref& cavity. We performed
the mean-LDOS optimization as follows. It is easy to show; [2®blem 8.6] that maximizing
the LDOS for a random polarization by averagaippolarizations is equivalent to maximizing
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Fig. 6. 2d TE optimization foré polarization from Sec. 8.2.1. The structure has
Q=5.16 108 andV = 0:092/ =n)2 obtained from vacuum initial guess.

the mean from thé& and&, polarizations, nameljLDOS(w; &)+ LDOS(w;&,)] =2. For this
new objective, we ran many different simulations with diffiet pseudo random initial guesses
(each pixel is randomly chosen betwes, andanax). About half gave the structure optimiz-
ing the & polarization (Fig. 6), while the other half gave the 90tated structure optimizing
the &, polarization. From these results, it seems that the opéitioia, instead of favoring both
& and& polarization simultaneously, simply randomly picks oneediion and optimizes it.
That is, there is @pontaneous symmetry breakiritgis better to optimize one polarization at
the expense of the other than to try to obtain a doubly degémeavity that resonates for both
polarizations. By selecting only one polarization to erd&rihese structures sacri ce a factor
of 2 in the mean LDOS, which is why we conclude that the begflsimode LDOS is at least
twice as big as the best two-mode LDOS.

8.2.3. Optimization for a randomly polarized dipole: maxpiDOS(w; &;)

In the previous section, we showed that maximizingrtiteanLDOS over all in-plane polariza-
tions was equivalent to maximizing the LDOS for a single piaktion at the expense of the or-
thogonal polarization. In order to obtain a structure thtasces all polarizations equally (via
a doubly degenerate resonance), we consider a differeettdlg: we maximize theninimum
LDOS over all in-plane polarizations (rather than the me@hg result of this optimization is
a three-fold symmetric microcavity shown in Fig. 7(a), whis the smallest symmetry group
that supports a (non-accidental) doubly degenerate maddstiown in Fig. 7(b-c). (The rectan-
gular FDFD grid breaks the three-fold symmetry, but theditre converges to true three-fold
symmetry with an exact degeneracy as the resolution isaiseit) Intuitively, larger symmetry
groups have fewer degrees of freedom for optimization Glae symmetry group [74] with
m-fold rotational symmetry plus re ections leaves only a \gedf anglep=min the degrees
of freedom), so the optimization is picking the smallestgilole symmetry group in order to



maximize the number of degrees of freedom available for meing LDOS.

As predicted in Sec. 8.2.2, the effective modal volinef this doubly degenerate cavity is
0:34(1 =n)?> 2 times the volume of the single-mode cavity from Sec. 8.2.1.

Technically, maximizing the minimum LDOS over all polarimas is signi cantly harder
than maximizing the mean LDOS. Unlike the mean LDOS, it issudtcient to consider only
the & and @&, polarizations, and in principle we must solve for the LDOSalhtangles. The
simplest approach is to merely sample the set of polarizatio compute the LDOS at many
discrete angles, and then to maximize the minimum LDOS) @vsrset. Although we tried
sampling up to 20 discrete angles, we found that it was sefht{obtaining thesamestructure)
to sample only three angles (0, 60, and 120). Furthermoeemtnimum LDOS over several
angles is no longer a differentiable function, but we cirgent that problem by the standard
transformation [75] of introducing a “dummy” variablend solving mak subject to the non-
linear constraints LDOS; at each anglg. (The resulting nonlinear-programming problem
was solved via the CCSA algorithm [65].)

8.3. 2D optimization for different frequencieaax mim, LDO Wn; &;)

In nonlinear devices, e.g. for nonlinear frequency coreerst is often desirable to design a
cavity which resonates at multipistinct frequencies [9, 10, 76—79], leading to a challeng-
ing multi-frequency cavity-design problem if one desiresnaall-volume cavity [80, 81]. The
simplest approach to designing such a multi-frequencytgawith our optimization techniques
is to maximize theminimumLDOS for sources at two (or more) frequencigg,and W». For
example, we begin by considerimg = 2w, (coupling TM to TM or TE to TE), the desired
relationship for intra-cavity second-harmonic generaiiSHG) [79, 81], with results shown
in Figs. 8(a) and 8(c). These results exhibit Bragg-onike-$tructures similar to the single-
frequency optimization in the previous sections, whichassurprising considering that Bragg
mirrors tend to have gaps at integer frequency multiple} 4bdl so the same mirror can con-
ne both a fundamental and harmonic frequency. A more chglileg case for optimization,
therefore, is to design frequencies that are not integetipies, and for illustration purposes
we consideredin, = 1:54, which results in the more complicated structure showngs F8(b)
and 8(d).

8.4. 2D TE thin strip case

In previous 2d TM and TE polarization cases, we expect anaiiobtmost ndQ versusV trade
off since the cavity can be surrounded by complete photoaialap or a Bragg onion, with
Q only limited by the computational-cell size. In a 2d settitg get aQ versusV trade off
analogous to 3d slabs, we need to limit the degrees of freémlome direction in order to force
the possibility of radiation loss. In this section, we chetse region for degrees of freedom to
be a thin strip [Fig. 3(b)].

Although we expect cavities in a nite-thickness strip toseantrinsic radiation loss in the
direction transverse to the strip, we also expect that itikhioe possible to make this radiation
loss arbitrarily small at the expense of modal volume. Faneale, if one starts with a periodic
waveguide structure [14] and introduces a defect in theopéarity, a resonant mode can be
trapped, and th@ can be made arbitrarily large by gradually tapering fromdéfect to the pe-
riodic structure [14,82-84]. To explore this tradeoff, \writ the modal volume by considering
a nite-lengthd 1/ strip of degrees of freedom. For each valuel¢fl = 1;2;3;5/ ), we plot
the obtained radiation lifetim®,,q4 as a function of the requested bandwi@thand the result is
shown in Fig. 9(a). For any givet asQ is increased the@;aqis increased as well (as explained
in Sec. 4), until it saturates at a maximum determined by &etdirs. First, the maximui@aq
is limited byd: a longerd gives more degrees of freedom and increases the maximuiiblgoss



(a). Optimized structure for randomly polarized dipole.
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(b). H; eld of rst degenerate mode. (c).H; eld of second degenerate mode.

Fig. 7. Optimized doubly-degenerate cavity from Sec. 8.@@nerated by maximiz-
ing the minimumLDOS over all in-plane polarizations. Starting from a vatuinitial
guess, the optimization discovers a structure \@ith (3-fold) rotational symmetry (top),
which supports doubly-degenerate [74] TE modes whtseelds are plotted at bottom
(blue/white/red = negative/zero/positive). (The rectdag FDFD grid slightly breaks the
three-fold symmetry and the degeneracy, but the resultgecge to exac€sz, symmetry
and degeneracy as resolution increases.)



(a). Optimization for TM withi, = 2vi4. (b). Optimization for TM withii, = 1:514.

(c). Optimization for TE withii, = 2. (d). Optimization for TE withi, = 1:514.

Fig. 8. Two-frequency cavity optimization from Sec. 8.3,édher TM (top) or TE (bottom)
polarizations. Left: microcavities which maximize the imium LDOS at two frequencies
Wy andw, = 2vin, e.g. for intra-cavity second-harmonic generation appiins [79, 81].
Con nement of such integer-multiple frequencies is phgllicenabled by the fact the con-
centric Bragg-onion “1d” bandgaps tend to occur at integattiple frequencies [14]. A
more challenging case is a two-frequency cavity fier= 1:5/, resulting in the more
complicated structures shown at right. (All structuresengptimized from vacuum initial
guesses.)



Qrad, as expected. Second, arou@dy 10’ the improvement becomes limited by the numer-
ical precision, which prevents the optimization from makprogress even though high®y.g
should theoretically be possible. Fbe 5/ , the resulting structure is shown in Fig. 9(b). [Note
that the data in Fig. 9(a) are from the optimization resuithie objectivee(x)LDOS(w; x9.]
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(a). Qraq vs O for 2d thin strip with different length (different DOF).

(b). An optimized structure for 2d thin strip from vacuumtial guess.

Fig. 9. 2D TE optimization for thin strips with xed width (genetry sketched in Fig. 3b).
Fig. (a): Quag Vs. O for 2d thin stirps with same width/ ( but different length ¢ =

I :21;31 ;5. AsQis increased in the optimization, high®f.q are obtained untiQaq is
limited by the degrees of freedom. As the degrees of freedmneaseQ,,q rst gets big-
ger, but becomes saturated at some level arouidi@8 to numerical precision. Fig. (b):
An optimized 2d thin-strip structure with width and lengthd = 5/ .

8.5. 3D case

In this section, we present the optimization results forTkelike polarization in the 3d slab
setting (Fig. 10). We also brie y discuss some variationstloe optimized structure and its
comparison with an air-slot cavity.

8.5.1. 3D slab optimization

With the optimization tools developed in the previous sewi we run large-scale simulations
on 3d slab case (with an in-plane dipole source, couplingeéa-esymmetry “TE-like” [14] res-
onances). Here we choose the dimensions of the slab th43¢ 30:19/ , where the thickness is
0:191 = 0:67(/ =n). A sketch of the physical model is shown in Fig. 10(a), and-&acompu-
tation domain (with mirror-symmetry reductions) is illeetied in Fig. 10(b). The optimization



(a). Sketch of the region for degrees of freedom in 3d slab. (b). Sketch for 3d slab computational do-
main (with mirror-symmetry imposed).

Fig. 10. We wish to optimize a microcavity in an air-membr&ieslab in Sec. 8.5, with
the effective computational domain depicted in (a), wheeedegrees of freedom are every
pixel in the 2d pattern of the slab cross-section for a xeithkhess. Since all 2d single-
polarization optimizations found structures with two rairsymmetry planes, we can re-
duce the computational domain te8lthe volume (b) by imposing these mirror symmetries
along with the vertical mirror symmetry.

discovers a structure (Fig. 11) with quality facQr= 30000 and extremely small mode vol-
umeV = 0:06(/ =n)3. [This result is obtained from optimizations with absoopt® gradually
increasing from 10 to 10 The optimization discovers structures with radiat@s 1:18 10*
atQ = 100, with radiatiorQ = 2:55 10* atQ = 1000, and with radiatio® = 2:98 10* at
Q= 10%]

A comparison with other large- or small-scale optimizatwork, such as 2.5d optimiza-
tion [72], Ls-type cavity [20] and -type cavity [1] optimization are given in table 1. Clearly,
the optimization was able to achieve four times smaller maileme than the smallest mode
volume (forQ within one order of magnitude of ours) we found in the literat[1]. (Note that
Ls-type [20] and H-type [1] cavities are designed from small-scale optini@atnd can be
fabricated; while both 2.5d optimization [72] and our résare purely theoretical and compu-
tational investigation from a large-scale optimizationgpective.)

Table 1. Comparison d andV for structures from our result and the literature.

Optimization Quality FactorQ | Mode VolumeV (I =n)3
2.5d optimization [72] 8000 0.32
L 3-type cavity optimization [20] 100000 0.70
Ho-type cavity optimization [1] | 280000 0.23
LDOS optimization 30000 0.06

8.5.2. Sensitivity to small features

In the optimized structure, there are some lament-likeistures which would be dif cult to
fabricate at infrared scales. As a rst assessment of theitapce of these tiny features, we



Fig. 11. Optimized pattern for a 3d slab from vacuum initiaégs (Sec. 8.5.1) with dimen-
sions 3 -3/ -0:19/ : Q=30000 and/ = 0:06(/ =n)3.

Fig. 12. 3d slab structure after manually removing tiny dees$ in Fig. 11 (Sec. 8.5.2):
Q= 10000 and/ = 0:06(/ =n)3.



manually remove the laments and obtain a structure (Fig.\izh Q = 10000 and roughly
sameV. Instead of post-processing the structure in this way, kviias the disadvantage of
no longer being a local optimum, future work should consglgypress these tiny features by
imposing some explicit constraints during optimizatiorbgrsome regularization and projec-
tion [3] as further discussed in Sec. 9.

8.5.3. Comparison with air-slot cavity

All these cavities listed in table 1 are dielectric cavitiesother words, the centers of these cavi-
ties are high-dielectric materials (Si and GaAs) and thasgies are useful for dipoles/emitters
lying in these materials. It is also re ected in our unit of deovolume. For example, the mode
volume of the cavity we obtain & = 0:06(/ =n)® = 0:06(/ =ng;)2.

It is known that air-slot cavities [85—88] can have extreyrahall volumes. For example,
Nomura [86] reported an air-slot cavity wi= 4:8 10° andV = 0:015/ =ng;;)3. Although
0.015 is smaller than 0.06, these two kinds of cavities atecamparable in two ways. First,
the two mode volumes are in different unjts=nai;) versug/ =ng;)2. In our units, their modal
volume is 065(/ =ng;)3. Second, these two types of cavities are for different apfitins: air-
slot cavities are useful for emitters lying in air, while teemiconductor-based cavities are
designed for emitters lying in Si and GaAs.

If the application is for emitters lying in air, in theory, vean also introduce an in nitesimal
air-slot at the center, oriented perpendicular to the Bteeld, into our structure. As discussed
in [85], after the introduction of an air-slot, the mode vole decreases by a factor(@;i=nair)?
without changingQ. In our case, this factor is about 12.4, and the new mode wlsm8
10 3(/ =ng)3= 1:1 10 %I =n4)3. Because the resolution we used (46-pixel per wavelength
in air) is not that high, the optimization discovers a di¢fieccavity, instead of one with air-
slot type. In future work, one could run the optimizationshahigh resolutions (at least in 2d
cases) to investigate whether air-slot structures candmdéred; at such high resolution, the
regularized gure of merit of Eq. (21) discussed in Sec. Se2dmes essential.

9. Manufacturability: Projection and Regularization

The primary purpose of this paper is to improve the matherabtormulation of the mi-
crocavity problem to make it amenable to large-scale tapoliptimization. It is well known,
however, that such topology optimization can sometimes teanon-manufacturable designs,
due to three problems: regions of intermediatealues, ne features (such as the “hairs” in
Fig. 11), and extreme sensitivity to variations in the degigrameters. Fortunately, there are
a variety of techniques to correct these dif culties, whibuld easily be combined with our
LDOS formulation, and we brie y review these projectionguarization and robusti cation
techniques here for the bene t of future work.

In cases where the optimization does not lead to “bang-bsolgtions, i.e. where there are
large regions of intermediate values that do not correspmadailable materials, one can use a
variety of penalization techniques that add a penalty éased as needed) to the objective for
intermediatee values [3, 89]. Another possibility is to use a level-setimoet[4, 90, 91], which
guarantee binary solutions (except possibly on a set of uneagro, since intermediate values
are typically used at the level set boundary in order to ensantinuity). A third possibility is
the SIMP (Solid Isotropic Material with Penalization) [8]re-parameterization of the problem
that is used in conjunction with the Itering techniques ciélsed below in order to project the
solution towards a bang-bang result.

To eliminate small features, a common solution is to applgaathing Iter to the degrees
of freedom (combined with a smoothed Heaviside projectiortransform back towards



bang-bang designs) [2,5-8,92-95]. This is often viewed r@galarization to ensure that the
problem is well-posed in the sense that the optimum shoulderge with resolution (rather
than yielding ner and ner features) [3]. Another approaittat can eliminate small features
as well as designs with extreme parameter sensitivity ibust’ optimization, in which one
typically optimizes a worst-case design over a set of patamencertainties (e.g. a small
“noise” added to each pixel) [67,96,97], which has been shiovéome cases to also eliminate
small features in topology optimization for photonics [88,99].

10. Conclusion

In this paper, we presented a novel formulation for largiesoptimization of optical cavities
via frequency-averaged LDOS. With this formulation, weadbéd various 2d and 3d cavity-
optimization results for different applications. Our riksshow that several times smaller modal
volume is theoretically possible for silicon cavities caamgd to previous work, without sacri-
cing Q. Many other possibilities present themselves for futurekwbirst, the slab thickness
in the 3d optimization (Sec. 8.5) is xed, but one can furtegtend our approach by allowing
the slab thickness to be one additional degree of freedomyicave the gure of merit. Second,
although we focused here on silicon-based cavities, oneasity apply our approach to other
materials (such as lower-index diamond for visible frequiesn[100, 101]). Since silicon cavity
design has been so heavily studied and many adequate dasggakeady known, it is espe-
cially in the context of new materials systems that optiiiwacan be valuable. Third, instead
of maximizing LDOS, one can maximize the frequency-avedagtal DOS over the whole
computational cell, which is known to be related to the bauoithe light trapping in photo-
voltaic problems [102, 103]. Fourth, one can extend our vasrknulti-frequency optimization
(Sec. 8.3) by de ning a more specialized gure of merit formimear frequency conversion
that includes an overlap factor [79, 81] for the two modes.

Appendix A: Computation of fY{w;x9

In this section, we computé{w; x9, the differentiationf=Tw of f(w;x% from Eq. (12), to
show that the residue of Eq. (21) can be evaluated withouadditional matrix solves. Differ-
entiating on both sides of Eq. (8), we have

TE(X; w) N ™ (e w)

M (e w) w T E(x;w) = i1J(X)
=) W: M 1) WE(XW =M I+ 2we(X)E(x;w)) :
(28)
Now differentiating on Eq. (12), we have
z .
fqw;x9 = 5, (X)de
P Tw -
= g VEVJ COM  Hwd(x)dx+ 2w J (M te(x)E(x; w)dx
z z (29)
_ g v_lva (X)E(x; w)dx + i%z M L(wd(x) T e(x)E(x: w)dx

Z
f(w;x9 .12 -
= — 4 |— E y E(x; dx:

w i b e(X)E" (x; w)E(x; w)dx

Note that we use the properties tihat(e; w) is complex symmetricl = M T) for both real
and complexv andJ(x) is real J (x) = JT(xX)].



Appendix B: Computation of the objective and its gradient

In this section, we derive an efcient expression for the eabive L =
Re f(Ww+iQ iGfq{w+iG dened in Sec. 5.2 as well as its gradient. The gradient
of the objective with respect to the design parameters isutated with standard adjoint
methods [54] in order to minimize the number of required maolves.
Let us denote its complex version hy = f(W+ iG iGf{W+ iG). From Eq. (12) and
Eq. (22), we can simplify it as
L = f(w+iQ iGI{w+i®
L z
T (74 12 Y Y
= f(w+iQ iG MT?+ i—  e(X)ET(x;Ww+ iQE(X; W+ iGdx
W 12,7 (30)

== iéf(v”v+ i0+ Fé e(x)ET(x;ZvT/+ iIQE(x; W+ iGdx:

w 6. . Yy 12 L L
= oy ié( E)ej E(x;w+ G+ FG e(X)ET(x; W+ iQE(x; W+ iQdx:

In the rest of this section, we compute the gradierit ofvith respect to the design parameter
&, Which is the dielectric constant at= xx. To obtain the sensitivity dE(x; W+ iG) to g, we
differentiate Eq. (17) with respect &

TE(X; W+ iG) .\ M (e W)

M (e; W E(;W+i®=0
(e;w) e e (x;w+iQ a
E(x; W+ iG ~ [ .
=) %= M 12 1+i3 d(x X)E(X W+ iQ :
Therefore, from Eq. (12), Eq. (22) and Eg. (31), we have
R L z T
7 J (XE(MXw+ iGdx - I TE(X; W+ G dx
e ﬂZeK
= W2 1+$ (M™ 1300) Td(x  x)EQG W+ i8)dx
.z ) ) (32)
= W 1+Z§ ET(x; W+ iQd(x x)E(x; W+ iGdx
= iw 1+%j ET (X W+ iQE(X W+ i0);
and
R z e z
7 eETEdx _, eET TEXVHIO 4 ™ i x)ET (x:+ IB)E(x: i+ i6)dx
e . Te
=2 eE'M ! W2 1+2L(j dix  x)E(x W+ i®
(33)

+ ET(x W+ iQE(X W+ i0
. Z
= 2@ 1+ ZLQ ML e(EGCW+IE) | d(x x)E( W+ iGdx

+ ET(x W+ iQE(xg W+ i0):



Combining Eqg. (30), Eq. (32) and Eq. (33), we have

= i+ WET (xi; W+ IQE(xi; W+ iG)

=
)
Of -
Tlo

12W° i ~ -
+ == 1+ —= AT(xcW+ iQE(xw+ iG); (34
>3 Mtag AW IGEXGI+ IO (34
whereA(x; W+ iG) satis es the scattering equation
M (e WA, W+ iG) = e(X)E(X; W+ iQ): (35)

Therefore, as usual for adjoint-methods [54], the gradi¢ht with respect to design parame-
terse can be evaluated with only a single additional matrix solge(®B5).
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